首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8289篇
  免费   1288篇
  国内免费   1283篇
化学   6277篇
晶体学   97篇
力学   539篇
综合类   107篇
数学   1032篇
物理学   2808篇
  2024年   11篇
  2023年   178篇
  2022年   235篇
  2021年   293篇
  2020年   387篇
  2019年   353篇
  2018年   318篇
  2017年   289篇
  2016年   424篇
  2015年   393篇
  2014年   460篇
  2013年   623篇
  2012年   738篇
  2011年   796篇
  2010年   515篇
  2009年   516篇
  2008年   610篇
  2007年   510篇
  2006年   437篇
  2005年   388篇
  2004年   302篇
  2003年   245篇
  2002年   226篇
  2001年   204篇
  2000年   158篇
  1999年   152篇
  1998年   141篇
  1997年   132篇
  1996年   131篇
  1995年   127篇
  1994年   109篇
  1993年   87篇
  1992年   82篇
  1991年   70篇
  1990年   48篇
  1989年   37篇
  1988年   30篇
  1987年   35篇
  1986年   14篇
  1985年   22篇
  1984年   8篇
  1983年   7篇
  1982年   3篇
  1981年   5篇
  1975年   1篇
  1974年   1篇
  1971年   1篇
  1959年   2篇
  1957年   4篇
  1936年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
Imine-linked covalent organic frameworks (COFs) have been extensively studied in photocatalysis because of their easy synthesis and excellent crystallinity. The effect of imine-bond orientation on the photocatalytic properties of COFs, however, is still rarely studied. Herein, we report two novel COFs with different orientations of imine bonds using oligo(phenylenevinylene) moieties. The COFs showed similar structures but great differences in their photoelectric properties. COF-932 demonstrated a superior hydrogen evolution performance compared to COF-923 when triethanolamine was used as the sacrificial agent. Interestingly, the use of ascorbic acid led to the protonation of the COFs, further altering the direction of electron transfer. The photocatalytic performances were increased to 23.4 and 0.73 mmol g−1 h−1 for protonated COF-923 and COF-932, respectively. This study provides a clear strategy for the design of imine-linked COF-based photocatalysts and advances the development of COFs.  相似文献   
92.
Cellulose aerogels are plagued by intermolecular hydrogen bond-induced structural plasticity, otherwise rely on chemicals modification to extend service life. Here, we demonstrate a petrochemical-free strategy to fabricate superelastic cellulose aerogels by designing hierarchical structures at multi scales. Oriented channels consolidate the whole architecture. Porous walls of dehydrated cellulose derived from thermal etching not only exhibit decreased rigidity and stickiness, but also guide the microscopic deformation and mitigate localized large strain, preventing structural collapse. The aerogels show exceptional stability, including temperature-invariant elasticity, fatigue resistance (∼5 % plastic deformation after 105 cycles), high angular recovery speed (1475.4° s−1), outperforming most cellulose-based aerogels. This benign strategy retains the biosafety of biomass and provides an alternative filter material for health-related applications, such as face masks and air purification.  相似文献   
93.
Aqueous redox flow batteries (ARFBs) are a promising technology for grid-scale energy storage, however, their commercial success relies on redox-active materials (RAM) with high electron storage capacity and cost competitiveness. Herein, a redox-active material lithium ferrocyanide (Li4[Fe(CN)6]) is designed. Li+ ions not only greatly boost the solubility of [Fe(CN)6]4− to 2.32 M at room temperature due to weak intermolecular interactions, but also improves the electrochemical performance of [Fe(CN)6]4−/3−. By coupling with Zn, ZIRFBs were built, and the capacity of the batteries was as high as 61.64 Ah L−1 (pH-neutral) and 56.28 Ah L−1 (alkaline) at a [Fe(CN)6]4− concentration of 2.30 M and 2.10 M. These represent unprecedentedly high [Fe(CN)6]4− concentrations and battery energy densities reported to date. Moreover, benefiting from the low cost of Li4[Fe(CN)6], the overall chemical cost of alkaline ZIRFB is as low as $11 per kWh, which is one-twentieth that of the state-of-the-art VFB ($211.54 per kWh). This work breaks through the limitations of traditional electrolyte composition optimization and will strongly promote the development of economical [Fe(CN)6]4−/3−-based RFBs in the future.  相似文献   
94.
The electrical and mechanical properties of graphene-based materials can be tuned by the introduction of nanopores, which are sensitively related to the size, morphology, density, and location of nanopores. The synthesis of low-dimensional graphene nanostructures containing well-defined nonplanar nanopores has been challenging due to the intrinsic steric hindrance. Herein, we report the selective synthesis of one-dimensional (1D) graphene nanoribbons (GNRs) containing periodic nonplanar [14]annulene pores on Ag(111) and two-dimensional (2D) porous graphene nanosheet containing periodic nonplanar [30]annulene pores on Au(111), starting from a same precursor. The formation of distinct products on the two substrates originates from the different thermodynamics and kinetics of coupling reactions. The reaction mechanisms were confirmed by a series of control experiments, and the appropriate thermodynamic and kinetic parameters for optimizing the reaction pathways were proposed. In addition, the combined scanning tunneling spectroscopy (STS) and density functional theory (DFT) calculations revealed the electronic structures of porous graphene structures, demonstrating the impact of nonplanar pores on the π-conjugation of molecules.  相似文献   
95.
Herein, we report a concise and divergent synthesis of the complex hasubanan alkaloids metaphanine and oxoepistephamiersine from commercially available and inexpensive cyclohexanedione monoethylene acetal. Our synthesis features a palladium-catalyzed cascade cyclization reaction to set the tricyclic carbon framework of the desired molecules, a regioselective Baeyer–Villiger oxidation followed by a MeNH2 triggered skeletal reorganization cascade to construct the benzannulated aza[4.4.3]propellane, and a strategically late-stage regio-/diastereoselective oxidative annulation of sp3 C−H bond to form the challenging THF ring system and hemiketal moiety in a single step. In addition, a highly enantioselective alkylation of cyclohexanedione monoethylene acetal paved the way for the asymmetric synthesis of target molecular.  相似文献   
96.
Orsellinic acid (OA) derivatives are produced by filamentous fungi using nonreducing polyketide synthases (nrPKSs). The chain-releasing thioesterase (TE) domains of such nrPKSs were proposed to also catalyze dimerization to yield didepsides, such as lecanoric acid. Here, we use combinatorial domain exchanges, domain dissections and reconstitutions to reveal that the TE domain of the lecanoric acid synthase Preu6 of Preussia isomera must collaborate with the starter acyl transferase (SAT) domain from the same nrPKS. We show that artificial SAT-TE fusion proteins are highly effective catalysts and reprogram the ketide homologation chassis to form didepsides. We also demonstrate that dissected SAT and TE domains of Preu6 physically interact, and SAT and TE domains of OA-synthesizing nrPKSs may co-evolve. Our work highlights an unexpected domain–domain interaction in nrPKSs that must be considered for the combinatorial biosynthesis of unnatural didepsides, depsidones, and diphenyl ethers.  相似文献   
97.
Replacing widely used organic liquid electrolytes with solid-state electrolytes (SSEs) could effectively solve the safety issues in sodium-ion batteries. Efforts on seeking novel solid-state electrolytes have been continued for decades. However, issues about SSEs still exist, such as low ionic conductivity at ambient temperature, difficulty in manufacturing, low electrochemical stability, poor compatibility with electrodes, etc. Here, sodium carbazolide (Na-CZ) and its THF-coordinated derivatives are rationally fabricated as Na+ conductors, and two of their crystal structures are successfully solved. Among these materials, THF-coordinated complexes exhibit fast Na+ conductivities, i.e., 1.20×10−4 S cm−1 and 1.95×10−3 S cm−1 at 90 °C for Na-CZ-1THF and Na-CZ-2THF, respectively, which are among the top Na+ conductors under the same condition. Furthermore, stable Na plating/stripping is observed even over 400 h cycling, showing outstanding interfacial stability and compatibility against Na electrode. More advantages such as ease of synthesis, low-cost, and cold pressing for molding can be obtained. In situ NMR results revealed that the evaporation of THF may play an essential role in the Na+ migration, where the movement of THF creates defects/vacancies and facilitates the migration of Na+.  相似文献   
98.
We have developed an efficient modular asymmetric synthesis of azahelicenes through an organocatalyzed asymmetric multicomponent reaction from readily available polycyclic aromatic amines, aldehydes, and (di)enamides, by employing a central-to-helical chirality conversion strategy. A series of aza[5]- and aza[4]helicenes bearing various substituents were readily afforded through this one-pot sequential enantioselective Povarov reaction/oxidative aromatization process, with good yields and high enantioselectivities. The fruitful and diverse derivatizations of the chiral azahelicene products demonstrated the potential of this method, and a preliminary application of the azahelicene derivative as a chiral organocatalyst was showcased. The photophysical and chiroptical properties of these azahelicenes, particularly the acid/base-triggered switching of these properties, were also well studied, which may find potential applications in the development of novel organic optoelectronic materials.  相似文献   
99.
Herein, we described the first synthesis of the pentasaccharide and decasaccharide of the A. baumannii ATCC 17961 O-antigen for developing a synthetic carbohydrate-based vaccine against A. baumannii infection. The efficient synthesis of the rare sugar 2,3-diacetamido-glucuronate was achieved using our recently introduced organocatalytic glycosylation method. We found, for the first time, that long-range levulinoyl group participation via a hydrogen bond can result in a significantly improved β-selectivity in glycosylations. This solves the stereoselectivity problem of highly branched galactose acceptors. The proposed mechanism was supported by control experiments and DFT computations. Benefiting from the long-range levulinoyl group participation strategy, the pentasaccharide donor and acceptor were obtained via an efficient [2+1+2] one-pot glycosylation method and were used for the target decasaccharide synthesis.  相似文献   
100.
The development of efficient enzyme immobilization to promote their recyclability and activity is highly desirable. Zeolitic imidazolate framework-8 (ZIF-8) has been proved to be an effective platform for enzyme immobilization due to its easy preparation and biocompatibility. However, the intrinsic hydrophobic characteristic hinders its further development in this filed. Herein, a facile synthesis approach was developed to immobilize pepsin (PEP) on the ZIF-8 carrier by using Ni2+ ions as anchor (ZIF-8@PEP-Ni). By contrast, the direct coating of PEP on the surface of ZIF-8 (ZIF-8@PEP) generated significant conformational changes. Electrochemical oxygen evolution reaction (OER) was employed to study the catalytic activity of immobilized PEP. The ZIF-8@PEP-Ni composite attains remarkable OER performance with an ultralow overpotential of only 127 mV at 10 mA cm−2, which is much lower than the 690 and 919 mV overpotential values of ZIF-8@PEP and PEP, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号